34

Biology and Biotechnology of Environmental Stress Tolerance in Plants, Volume 3

Jariyal, M., Manish, Y., Nitin, K. S., Suman, Y., Iti, S., Swati, D., & Arti, T., (2020). Microbial

remediation progress and future prospects. Bioremediation of Pollutants, 187–214. Elsevier.

doi: 10.1016/b978-0-12-819025-8.00008-9.

Jones, D., Peter, E., & Candido, M., (1999). feeding is inhibited by sublethal concentrations

of toxicants and by heat stress in the nematode Caenorhabditis elegans: Relationship to the

cellular stress response. Journal Of Experimental Zoology, 284, 147–157. doi: 10.1002/

(SICI)1097-010X(19990701)284:2.

Khan, F. I., Tahir, H., & Ramzi, H., (2004). An overview and analysis of site remediation

technologies. Journal of Environmental Management, 71(2), 95–122. Academic Press. doi:

10.1016/j.jenvman.2004.02.003.

Khan, N., & Asghari, B., (2016). Role of plant growth promoting rhizobacteria and ag-nano

particle in the bioremediation of heavy metals and maize growth under municipal

wastewater irrigation. International Journal of Phytoremediation, 18(3), 211–221. Taylor

& Francis. doi: 10.1080/15226514.2015.1064352.

Khan, Z., & Sharon, D., (2011). Endophyte-assisted phytoremediation. Plant Biol., 12,

97–105.

Khan, Z., David, R., Trent, K., May, D. A., Raymond, Y., & Sharon, D., (2014). Degradation,

phytoprotection and phytoremediation of phenanthrene by endophyte Pseudomonas putida,

PD1. Environmental Science & Technology, 48(20), 12221–12228. ACS Publications.

Klaassen, M. T., Peter, M. B., Chris, M., & Luisa, M. T., (2019). Multi-allelic QTL analysis

of protein content in a bi-parental population of cultivated tetraploid potato. Euphytica,

215(2). doi: 10.1007/s10681-018-2331-z.

Kloepper, J. W., (1978). Plant growth-promoting rhizobacteria on radishes. In: Proc. of

the 4th Internet. Conf. on Plant Pathogenic Bacter, Station de Pathologie Vegetale et

Phytobacteriologie (Vol. 2, pp. 879–882). INRA, Angers, France.

Kumar, A., Bisht, B. S., Joshi, V. D., & Dhewa, T., (2011). Review on bioremediation of

polluted environment: A management tool. International Journal of Environmental

Sciences, 1(6), 1079–1093. Integrated Publishing Association.

Kumar, A., Goutam, K. D., Madhusmita, B., Puja, A. P., Milan, K. L., Mirza, J. B., & Padmini,

S., (2020). Effect of drought stress on resistant starch content and glycemic index of rice

(Oryza Sativa L.). Starch/Staerke, 72(11, 12), 1900229. Wiley. doi: 10.1002/star.201900229.

Kumar, A., Sarangadhar, N., Umakanta, N., Rameswar, P. S., Milan, K. L., Azharudheen, T.

P., Sasmita, B., et al., (2021). A single nucleotide substitution in the SPDT transporter gene

reduced phytic acid and increased mineral bioavailability from rice grain (Oryza Sativa

L.). Journal of Food Biochemistry, 45(7), e13822. John Wiley & Sons, Ltd. doi: 10.1111/

jfbc.13822.

Kumar, D., Som, D., Pinky, R., Sushil, S. C., Milan, K. L., Rahul, K. T., Kumar, N. C., &

Brajesh, S., (2021). Beneficial microorganisms in crop growth, soil health, and sustainable

environmental management. Plant-Microbial Interactions and Smart Agricultural

Biotechnology, 11–32. Boca Raton: CRC Press. doi: 10.1201/9781003213864-2.

Kumar, V., & Gaurav, S., (2020). Microbe-Assisted Phytoremediation of Environmental

Pollutants: Recent Advances and Challenges. AK Peters/CRC Press.

Lal, M. K., Awadhesh, K., Ashok, K., Pinky, R., Augustine, O. O., Nitasha, T., Vandana, P.,

Asha, T., & Brajesh, S., (2020). Dietary fibers in potato. In: Potato, 37–50. Springer. doi:

10.1007/978-981-15-7662-1_3.